

**20237 120 MINUTES** 

| 1. | Fluidity of a phospholipid bilayer depends on:  1. Chain length of the fatty acid  2. Glycoprotein content of the lipid bilayer  3. Degree of unsaturation of fatty acid  4. Carbohydrate content of the lipid bilayer |                                                                                                                 |                                            |                                                                       |                                                          |                                                                         |                                 |                   |   |  |  |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------|-------------------|---|--|--|--|
| •  | A)                                                                                                                                                                                                                     | 1 only                                                                                                          | B)                                         | 1 & 3 only                                                            | C)                                                       | 2 only                                                                  | D)                              | 1 & 2 only        |   |  |  |  |
| 2. | Mem A) B) C) D)                                                                                                                                                                                                        | Channel prote                                                                                                   | ins are<br>teins can<br>ins can<br>ins are | glycoproteins<br>n mediate active<br>mediate active<br>synthesized by | and cha<br>ve trans <sub>l</sub><br>e transpe            | channel proteins and port, but carried ort, but channel posomes, but ch | re lipopr<br>protein<br>protein | s cannot s cannot |   |  |  |  |
| 3. | The 'A)                                                                                                                                                                                                                | Watson-Crick d<br>A-DNA                                                                                         | ouble h<br>B)                              | elix model des<br>Z-DNA                                               | scribes t<br>C)                                          | the structure of: B-DNA                                                 | D)                              | Triplex DNA       |   |  |  |  |
| 4. | A wi<br>A)                                                                                                                                                                                                             | dely used comp<br>Lactose                                                                                       | oound fo<br>B)                             | or the preparat<br>Glucose                                            | ion of st<br>C)                                          | table density gr<br>Sucrose                                             | adient is<br>D)                 | s:<br>Maltose     |   |  |  |  |
| 5. | Hayf<br>A)<br>B)<br>C)<br>D)                                                                                                                                                                                           | The number stops dividing The number                                                                            | of mito<br>g<br>of mito                    | sis a cell is cap                                                     | pable of<br>volved i                                     | nal life cycle of<br>undergoing in<br>n chromosome<br>mosome during     | tissue cu<br>separati           | ulture before it  |   |  |  |  |
| 6. | 1.<br>2.<br>3.<br>4.                                                                                                                                                                                                   | Klinefelter's Down's sync Formation of                                                                          | syndron<br>syndro<br>drome is<br>f multiv  | ne is due to cheme has 44+XX s due to extra 2 ralents in meio         | romosor<br>XY cond<br>21 <sup>st</sup> chro<br>sis is du | omosome<br>le to reciprocal                                             | transloc                        | eation            |   |  |  |  |
| _  | A)                                                                                                                                                                                                                     | 1 & 3 only                                                                                                      |                                            | 1, 2 & 3 onl                                                          | ly C)                                                    | 2 & 3 only                                                              | D)                              | 1, 2, 3 & 4       |   |  |  |  |
| 7. | Ame<br>A)<br>B)                                                                                                                                                                                                        | strains of Sa                                                                                                   | mutati<br>Imonella                         | a typhimurium                                                         | ı                                                        | s) operon in the                                                        |                                 | •                 | 2 |  |  |  |
|    | D)                                                                                                                                                                                                                     | Reversion of mutations in the lactose (lac) operon in the genetically altered strains of Salmonella typhimurium |                                            |                                                                       |                                                          |                                                                         |                                 |                   |   |  |  |  |

Reversion of mutations in the tryptophan(trp) operon in the genetically altered

Reversion of mutations in the arabinose(ara) operon in the genetically altered

strains of Salmonella typhimurium

strains of Salmonella typhimurium

C)

D)

| 8.   | Match Group I with Group II |                           |              |              |                                               |  |  |  |  |  |  |
|------|-----------------------------|---------------------------|--------------|--------------|-----------------------------------------------|--|--|--|--|--|--|
|      | <u>Group</u>                | <u>o I</u>                | <u>Group</u> | <u> </u>     |                                               |  |  |  |  |  |  |
|      | a) p53                      | 3                         | 1. GTI       | Pase         |                                               |  |  |  |  |  |  |
|      | b) RB                       | <b>31</b>                 | 2. Trai      | nscription   | on factor                                     |  |  |  |  |  |  |
|      | c) NF                       |                           |              | A repair     |                                               |  |  |  |  |  |  |
|      | /                           | .CA1 and BRCA2            |              |              | checkpoint                                    |  |  |  |  |  |  |
|      | u) Di                       | CTT and DRCT2             | 4. CCII      | i cycle c    | neekpoint                                     |  |  |  |  |  |  |
|      | A)                          | a-1, b-3, c-2, d-4        |              | B)           | a-4, b-1, c-3, d-2                            |  |  |  |  |  |  |
|      | C)                          | a-2, b-4, c-1, d-3        |              | D)           | a-2, b-4, c-3, d-1                            |  |  |  |  |  |  |
|      | C)                          | u 2, 0 1, C 1, u 3        |              | D)           | u 2, 0 1, 0 3, u 1                            |  |  |  |  |  |  |
| 9.   | Choos                       | e the statement which i   | is corre     | ct about     | gene transcription                            |  |  |  |  |  |  |
| · ·  | A)                          |                           |              |              | ing strand and complementary to the template  |  |  |  |  |  |  |
|      | A)                          | strand                    | iicai to     | ine cou      | ing straind and complementary to the template |  |  |  |  |  |  |
|      | B)                          |                           | tical to     | the tem      | plate strand and complementary to the coding  |  |  |  |  |  |  |
|      | D)                          | strand                    | iicai to     | ine tem      | plate strand and complementary to the coding  |  |  |  |  |  |  |
|      | C)                          |                           | tical to l   | both the     | e coding and template strands                 |  |  |  |  |  |  |
|      | D)                          | None of the above         | ileai to     | oour un      | coding and template straines                  |  |  |  |  |  |  |
|      | 2) 1.010 01 410 400 10      |                           |              |              |                                               |  |  |  |  |  |  |
| 10.  | nolv(A                      | A) tailing is catalyzed b | v.           |              |                                               |  |  |  |  |  |  |
| 10.  | A)                          | 2'-O- methyltransfera     |              | B)           | Polyadenylate polymerase                      |  |  |  |  |  |  |
|      | C)                          | Guanylyltransferase       | 150          | D)           | tRNA nucleotidyl transferase                  |  |  |  |  |  |  |
|      | C)                          | Guarryruansiciasc         |              | D)           | tixiva nucleonayi transiciase                 |  |  |  |  |  |  |
| 11.  | The la                      | ck of correlation betwe   | een gen      | ome siz      | e and genetic complexity is called            |  |  |  |  |  |  |
| 11.  | A)                          | Cot curve                 | on gen       | B)           | Hardy-Weinberg law                            |  |  |  |  |  |  |
|      | C)                          | C-value paradox           |              | D)           | Pleiotropy                                    |  |  |  |  |  |  |
|      | C)                          | C-value paradox           |              | D)           | Теюнору                                       |  |  |  |  |  |  |
| 12.  | Purifie                     | ed duplex DNA molecu      | ıles can     | not exis     | st in which one of the following forms?       |  |  |  |  |  |  |
| 12.  | A)                          | Linear                    | iios can     | B)           | Circular and supercoiled                      |  |  |  |  |  |  |
|      | C)                          | Linear and supercoile     | d            | D)           | Circular and relaxed                          |  |  |  |  |  |  |
|      | C)                          | Linear and supercone      | u            | D)           | Circular and relaxed                          |  |  |  |  |  |  |
| 13.  | The c                       | omplete set of genetic    | informa      | ation co     | ntained within the members in a population is |  |  |  |  |  |  |
| 13.  | called:                     | -                         | miomic       | ition co.    | manied within the members in a population is  |  |  |  |  |  |  |
|      | A)                          | C-value                   |              | B)           | Gene pool                                     |  |  |  |  |  |  |
|      | C)                          | Demes                     |              | D)           | Karyotype                                     |  |  |  |  |  |  |
|      | C)                          | Deffies                   |              | D)           | Karyotype                                     |  |  |  |  |  |  |
| 14.  | If the t                    | frequency of a homozy     | gous de      | ominant      | genotype in a randomly mating population is   |  |  |  |  |  |  |
|      |                             |                           | _            |              | allele? What is the combined frequency of all |  |  |  |  |  |  |
|      |                             | alleles of this gene?     | 1 1110 40    | ,11111100110 | ariere. What is the comemon frequency of an   |  |  |  |  |  |  |
|      | A)                          | 0.30 and 0.91             |              | B)           | 0.30 and 0.70                                 |  |  |  |  |  |  |
|      |                             | 0.30 and 0.09             |              | D)           | 0.09 and 0.91                                 |  |  |  |  |  |  |
|      | C)                          | 0.30 and 0.09             |              | D)           | 0.09 and 0.91                                 |  |  |  |  |  |  |
| 15.  | Regula                      | atory elements of SOS     | respons      | se in F      | voli are:                                     |  |  |  |  |  |  |
| 1.5. | A)                          | DNA ligase and XRC        | -            | B)           | Dam and Dcm                                   |  |  |  |  |  |  |
|      | C)                          | Rec A and Lex A           | <b>Д</b> Т   | D)           | Rec BCD and Lex A                             |  |  |  |  |  |  |
|      | Cj                          | NEC A allu LEX A          |              | ט)           | NCC DCD and LCX A                             |  |  |  |  |  |  |
|      |                             |                           |              |              |                                               |  |  |  |  |  |  |

| 16.                                                                                                                                                                                                                                                | Choose the statements which is/are correct about tRNA:  1. tRNAs have a guanylate residue at the 5'end and a trinucleotide sequence CCA at |                              |                                       |                                   |                                                                |                   |                               |          |                                     |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------|-----------------------------------|----------------------------------------------------------------|-------------------|-------------------------------|----------|-------------------------------------|--|--|--|--|
|                                                                                                                                                                                                                                                    | the 3' end 2. tRNAs have a 7-methylguanosine residue at the 5'end and a trinucleotide sequence CCA at the 3' end                           |                              |                                       |                                   |                                                                |                   |                               |          |                                     |  |  |  |  |
|                                                                                                                                                                                                                                                    | 3.                                                                                                                                         |                              |                                       | nthetase                          | es attack                                                      | n correct         | aminoacids to                 | their tR | ?NAs                                |  |  |  |  |
|                                                                                                                                                                                                                                                    | 4.                                                                                                                                         |                              | •                                     |                                   |                                                                |                   | ds to their tRN               |          |                                     |  |  |  |  |
|                                                                                                                                                                                                                                                    | A)                                                                                                                                         | 1 & 3 only                   | B)                                    | 1 only                            | 7                                                              | C)                | 1 & 4 only                    | D)       | 2 & 3 only                          |  |  |  |  |
| 17.                                                                                                                                                                                                                                                | • •                                                                                                                                        | of gene interac              |                                       | en one g                          | gene ma                                                        | asks or n         | nodifies the ex               | pression | of another gene                     |  |  |  |  |
|                                                                                                                                                                                                                                                    | A)                                                                                                                                         | Pleiotropy                   | B)                                    | Epista                            | ısis                                                           | C)                | Interference                  | D)       | Mosaicism                           |  |  |  |  |
| 18.                                                                                                                                                                                                                                                | with a                                                                                                                                     | -                            |                                       |                                   |                                                                |                   |                               |          | nan has children<br>Four unaffected |  |  |  |  |
|                                                                                                                                                                                                                                                    | A)                                                                                                                                         | $\frac{3}{4}$ and $81/25$    | 6                                     |                                   | B) $\frac{3}{4}$ and $\frac{108}{256}$                         |                   |                               |          |                                     |  |  |  |  |
|                                                                                                                                                                                                                                                    | C)                                                                                                                                         | $\frac{1}{4}$ and $81/25$    | 66                                    |                                   | D)                                                             | $\frac{3}{4}$ and | 27/256                        |          |                                     |  |  |  |  |
| 19.                                                                                                                                                                                                                                                | Drosophila melanogaster has pairs of homologous chromosomes.                                                                               |                              |                                       |                                   |                                                                |                   |                               |          |                                     |  |  |  |  |
|                                                                                                                                                                                                                                                    | A)                                                                                                                                         | 2                            | B)                                    | 4                                 |                                                                | C)                | 1                             | D)       | 3                                   |  |  |  |  |
| 20.                                                                                                                                                                                                                                                | Choos<br>1.<br>2.<br>3.<br>4.                                                                                                              | Mechanism f<br>Occurs by co  | nstriction<br>for cytolog<br>nstructi | lls and b<br>on cont<br>lls and b | y construction ractile ring the by constriction body is formed | ory<br>in plant   | cells                         |          |                                     |  |  |  |  |
|                                                                                                                                                                                                                                                    | A)                                                                                                                                         | 1 only                       | B)                                    | 1 & 2                             | only                                                           | C)                | 3 & 4 only                    | D)       | 2 only                              |  |  |  |  |
| 21.                                                                                                                                                                                                                                                | A reducing agent which disrupts the disulfide bond to sulfhydryl groups                                                                    |                              |                                       |                                   |                                                                |                   |                               |          |                                     |  |  |  |  |
|                                                                                                                                                                                                                                                    | A)                                                                                                                                         | Urea                         |                                       |                                   | B)                                                             | Ethano            |                               |          |                                     |  |  |  |  |
|                                                                                                                                                                                                                                                    | C)                                                                                                                                         | Heavy metals                 | 5                                     |                                   | D)                                                             | β-mer             | captoethanol                  |          |                                     |  |  |  |  |
| 22. Which of the following statements are correct?  1. $1 A_{260}$ unit= ~50 microgram/ml of dsDNA  2. $1 A_{260}$ unit= ~40 microgram/ml of dsDNA  3. $1 A_{260}$ unit= ~40 microgram/ml of ssRNA  4. $1 A_{260}$ unit= ~50 microgram/ml of ssRNA |                                                                                                                                            |                              |                                       |                                   |                                                                |                   |                               |          |                                     |  |  |  |  |
|                                                                                                                                                                                                                                                    | A)                                                                                                                                         | 1 & 3 only                   | B)                                    | 1 only                            | 7                                                              | C)                | 2 only                        | D)       | 2 & 4 only                          |  |  |  |  |
| 23.                                                                                                                                                                                                                                                | Choos<br>A)                                                                                                                                | se the plant that<br>Sorghum | t display<br>B)                       | ys C <sub>3</sub> pa<br>Whea      | -                                                              | of carbon<br>C)   | n assimilation:<br>Amaranthus | D)       | Maize                               |  |  |  |  |

| 24.                                                                                                                                                                                                                                                                                         | Which of the following statements about gluconeogenesis are true?                            |                                                                   |                                  |                                  |                                       |                |           |                |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------|----------------------------------|---------------------------------------|----------------|-----------|----------------|--|--|--|--|--|--|
|                                                                                                                                                                                                                                                                                             | 1.                                                                                           | It occurs activ                                                   | ely in th                        | ne muscle durir                  | ng perio                              | ds of exercise |           |                |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                             | 2.                                                                                           |                                                                   | •                                |                                  |                                       | of exercise or | fasting   |                |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                             | 3.                                                                                           |                                                                   |                                  | ne adipose tissi                 |                                       |                | C         |                |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                             | 4.                                                                                           |                                                                   |                                  | ne kidney durin                  |                                       |                |           |                |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                             | A)                                                                                           | 1 & 2 only                                                        | B)                               | 2 & 3 only                       | C)                                    | 2 & 4 only     | D)        | 1 & 4 only     |  |  |  |  |  |  |
| 25.                                                                                                                                                                                                                                                                                         | correct                                                                                      | ones:                                                             |                                  | nents connected                  | l with th                             | ne hormone cyt | okinon :  | and select the |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                             | 1.                                                                                           | Regulate root                                                     | _                                | 1 .                              |                                       |                |           |                |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                             | 2.                                                                                           | Induce the gro                                                    |                                  |                                  |                                       |                |           |                |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                             | 3.                                                                                           | Promote cell division Regulate Apical dominance                   |                                  |                                  |                                       |                |           |                |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                             |                                                                                              |                                                                   |                                  |                                  |                                       |                |           |                |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                             | A)                                                                                           |                                                                   |                                  |                                  |                                       |                |           |                |  |  |  |  |  |  |
| <ul> <li>Which of the following are the physiological roles of bile salts?</li> <li>They aid in the digestion of lipid</li> <li>They facilitate the absorption of sugars</li> <li>They facilitate the absorption of lipid</li> <li>They provide a means of cholesterol digestion</li> </ul> |                                                                                              |                                                                   |                                  |                                  |                                       |                |           |                |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                             | A)                                                                                           | 1 & 2 only                                                        | B)                               | 1 & 3 only                       | C)                                    | 2 & 4 only     | D)        | 1, 2 & 4 only  |  |  |  |  |  |  |
| 27.                                                                                                                                                                                                                                                                                         | Which of the following is an aromatic aminoacid?                                             |                                                                   |                                  |                                  |                                       |                |           |                |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                             | A)                                                                                           | Proline                                                           | -6                               | B)                               |                                       | lalanine       |           |                |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                             | C)                                                                                           | Leucine                                                           |                                  | D)                               | · · · · · · · · · · · · · · · · · · · |                |           |                |  |  |  |  |  |  |
| 28.                                                                                                                                                                                                                                                                                         | The sli<br>1.<br>2.<br>3.<br>4.<br>5.                                                        | Inward propag<br>Binding of ca<br>Generation of<br>Release of cal | gation o<br>lcium to<br>action p | potential in mu<br>om sarcoplasm | n along<br>scle fib<br>ic reticu      | T-tubules res  | ng of thi | n on thick     |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                             | A)                                                                                           | 3-1-4-2-5                                                         | B)                               | 2-3-1-4-5                        | C)                                    | 4-2-3-1-5      | D)        | 3-4-1-2-5      |  |  |  |  |  |  |
| 29.                                                                                                                                                                                                                                                                                         | An inh                                                                                       | ibitory neurotr                                                   | ansmitte                         | er is:                           |                                       |                |           |                |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                             | A)                                                                                           | Substance P                                                       | B)                               | Glutamate                        | C)                                    | GABA           | D)        | Aspartate      |  |  |  |  |  |  |
| 30.                                                                                                                                                                                                                                                                                         | Phosphofuncto kinase, a central target for regulation of the glycolytic pathway is regulated |                                                                   |                                  |                                  |                                       |                |           |                |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                             | by:<br>A)                                                                                    | АТР                                                               | B)                               | A M P                            | C)                                    | Citvate        | D)        | All the above  |  |  |  |  |  |  |

| 31. |                                                                                                                                                                                                                                                                                          | The shape of the curve is hyperbola  As substrate concentration increases the initial velocity of reaction, V, also increases |                                          |                                                      |                                |                                 |                           |          |                                      |  |  |  |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------|--------------------------------|---------------------------------|---------------------------|----------|--------------------------------------|--|--|--|--|
| 32. | An ina<br>A)                                                                                                                                                                                                                                                                             | active precursor<br>Ribozyme                                                                                                  | r of an e<br>B)                          | enzyme<br>Zymo                                       |                                | d:<br>C)                        | Synzyme                   | D)       | Isozyme                              |  |  |  |  |
| 33. | The en A)                                                                                                                                                                                                                                                                                | nzyme used in t<br>α –Amylase<br>Lipases                                                                                      | the leath                                | ner indu                                             | stry is:<br>B)<br>D)           | Cellul<br>Alkali                | ase<br>ne proteases       |          |                                      |  |  |  |  |
| 34. | A broad-based technique used to localize radioisotopes within the tissue sections is:  A) Mass spectrometry B) Autoradiography  C) X-ray crystallography D) Atomic force microscopy                                                                                                      |                                                                                                                               |                                          |                                                      |                                |                                 |                           |          |                                      |  |  |  |  |
| 35. | What is the applied centrifugal field at a point equivalent to 5 cm from the centre of rotation and an angular velocity of 3000 rad s $^{-1}$ ?  A) $4.5 \times 10^7$ cm s $^{-2}$ B) $4.7 \times 10^5$ cm s $^{-2}$ C) $1.5 \times 10^7$ cm s $^{-2}$ D) $1.5 \times 10^5$ cm s $^{-2}$ |                                                                                                                               |                                          |                                                      |                                |                                 |                           |          |                                      |  |  |  |  |
| 36. | Which<br>A)                                                                                                                                                                                                                                                                              | n of the followin<br>DEAE                                                                                                     | ng is a o<br>B)                          | cationic<br>CMC                                      | exchan                         | ger used                        | d in Ion excha<br>Dowex-1 | nge chro | omatography?<br>Dextran              |  |  |  |  |
| 37. | Choos 1. 2. 3. 4.                                                                                                                                                                                                                                                                        | negatively ch                                                                                                                 | based on based on verted arged proverted | on mass-<br>on charg<br>into pos<br>late<br>into neg | to-char<br>e-to-ma<br>sitively | ge ratio<br>ss ratio<br>charged | gaseous ions              | and acc  | elerated towards a celerated towards |  |  |  |  |
|     | A)                                                                                                                                                                                                                                                                                       | 1 & 3 only                                                                                                                    | B)                                       | 1 only                                               | •                              | C)                              | 2 & 4 only                | D)       | 1 & 4 only                           |  |  |  |  |
| 38. | 8. X-ray diffraction is based on: A) Refractive index B) Bragg's law C) Beer-Lambert's law D) Relaxation                                                                                                                                                                                 |                                                                                                                               |                                          |                                                      |                                |                                 |                           |          |                                      |  |  |  |  |
| 39. | explai                                                                                                                                                                                                                                                                                   | on between act                                                                                                                | ion spec                                 | ctra and                                             |                                | •                               |                           |          | ctivity is                           |  |  |  |  |
|     | A) Calvin cycle B) Engelmann's experiment C) Hill reaction D) CAM pathway                                                                                                                                                                                                                |                                                                                                                               |                                          |                                                      |                                |                                 |                           |          |                                      |  |  |  |  |

| 40. | The site of ATP synthesis is:                                                 |                                        |            |           |                         |           |                  |          |                |  |  |  |  |  |
|-----|-------------------------------------------------------------------------------|----------------------------------------|------------|-----------|-------------------------|-----------|------------------|----------|----------------|--|--|--|--|--|
|     | A)                                                                            | Three β–subu                           | nits in F  | 1 ATPa    | se                      |           |                  |          |                |  |  |  |  |  |
|     | B)                                                                            | Three α–subu                           | nits in F  | 1 ATPa    | se                      |           |                  |          |                |  |  |  |  |  |
|     | C)                                                                            | The $\gamma$ , $\delta$ and $\epsilon$ | subunit    | ts in F1  | ATPas                   | se        |                  |          |                |  |  |  |  |  |
|     | D)                                                                            | The 'a' and 'b                         |            |           |                         |           |                  |          |                |  |  |  |  |  |
| 41. | The 1                                                                         | most important g                       | ene for    | prokarv   | otic pł                 | vlogenv   | v is             |          |                |  |  |  |  |  |
|     | A)                                                                            | 18s rRNA                               | B)         | 30s rRN   | -                       | C)        | 70s rRNA         | D)       | 16s rRNA       |  |  |  |  |  |
| 42. | Whic                                                                          | ch of the following                    | ng are th  | ne functi | ons of                  | reverse   | transcriptase in | n retro  | viruses?       |  |  |  |  |  |
|     | 1.                                                                            | It hydrolyzes                          |            |           |                         |           |                  |          |                |  |  |  |  |  |
|     | 2.                                                                            | It uses viral R                        | NA as a    | templat   | te for l                | DNA sy    | nthesis          |          |                |  |  |  |  |  |
|     | 3.                                                                            |                                        |            |           |                         |           |                  |          |                |  |  |  |  |  |
|     | 4.                                                                            |                                        |            | -         |                         | _         | complementary    | RNA      | strand         |  |  |  |  |  |
|     | 5.                                                                            | It degrades R                          | NA fron    | 1 DNA-I   | RNA ł                   | ıybrid    |                  |          |                |  |  |  |  |  |
|     | A)                                                                            | 2 & 5 only                             | B)         | 2 & 3 o   | only                    | C)        | 1, 3 & 4 only    | D)       | 1, 3 & 5 only  |  |  |  |  |  |
| 43. | Prote                                                                         | einaceous infecti                      | ous ager   |           | alled:                  |           |                  |          |                |  |  |  |  |  |
|     | A)                                                                            | Virusoid                               | B)         | Viroid    |                         | C)        | Prions           | D)       | Virions        |  |  |  |  |  |
| 44. | Matc                                                                          | ch Group I with (                      | Group II   |           |                         |           |                  |          |                |  |  |  |  |  |
|     |                                                                               | roup I                                 |            |           | Grou                    |           |                  |          |                |  |  |  |  |  |
|     |                                                                               | Retroviridae                           |            |           |                         |           | ble stranded DN  | NΑ       |                |  |  |  |  |  |
|     |                                                                               | Herpesviridae                          |            |           |                         |           | nd RNA           |          |                |  |  |  |  |  |
|     |                                                                               | Rhabdoviridae                          |            |           |                         |           | uble stranded I  | DNA      |                |  |  |  |  |  |
|     | d. I                                                                          | Baculoviridae                          |            |           | 4. Plu                  | s strand  | RNA              |          |                |  |  |  |  |  |
|     | A)                                                                            | a-1, b-2, c-3,                         | d-4        |           | B)                      | a-2, b-   | -3, c-4, d-1     |          |                |  |  |  |  |  |
|     | C)                                                                            | a-3, b-4, c-1 d                        | 1-2        |           | D)                      | a-4, b-   | -1, c-2, d-3     |          |                |  |  |  |  |  |
| 45. | In the                                                                        | e exponential ph                       | ase of g   | rowth of  | f a bac                 | terial cu | lture, 100 cfu/r | nl cell  | s increased to |  |  |  |  |  |
|     | 3200 cfu/ml cells in 2 hours. What is the generation time for this bacterium? |                                        |            |           |                         |           |                  |          |                |  |  |  |  |  |
|     | A)                                                                            | 12 minutes                             | B)         | 15 min    | utes                    | C)        | 24 minutes       | D)       | 30 minutes     |  |  |  |  |  |
| 46. | Whic                                                                          | ch of the following                    | ng is a tı | ransport  | mediu                   | ım?       |                  |          |                |  |  |  |  |  |
|     | A)                                                                            | Selenite F bro                         | oth        |           | B)                      | Mc Le     | od's medium      |          |                |  |  |  |  |  |
|     | C)                                                                            | Stuart's media                         | um         |           | D)                      | Mac (     | Conkey's medi    | um       |                |  |  |  |  |  |
| 47. | The 1                                                                         | reducing agent u                       | sed in m   | nicrobial | cell c                  | ulture m  | nedium is:       |          |                |  |  |  |  |  |
|     | A)                                                                            | 0.1% thioglyc                          | olate      |           | B)                      | 1% pe     | •                |          |                |  |  |  |  |  |
|     | C)                                                                            | Palladium                              |            |           | D)                      | Tetrat    | hionate          |          |                |  |  |  |  |  |
| 48. | The t                                                                         | test organism use                      |            | eterminii | ng the                  | efficacy  | of moist heat    | steriliz | ation is:      |  |  |  |  |  |
|     | A)                                                                            | Clostridium te                         | etani      |           | B)                      | Bacill    | us stearotherm   | ophilus  | S              |  |  |  |  |  |
|     | C)                                                                            | Staphylococci                          | us aureu   | us        | D)                      | Strept    | ococcus faecali  | S        |                |  |  |  |  |  |
| 49. |                                                                               | sterilization inv                      |            |           |                         |           |                  |          |                |  |  |  |  |  |
|     | A)                                                                            | Infrared radia                         |            |           | B) Ultrasonic vibration |           |                  |          |                |  |  |  |  |  |
|     | C)                                                                            | Gamma radia                            | tion       |           | D)                      | Forma     | ldehyde gas      |          |                |  |  |  |  |  |

| 50.         | The most important antibacterial agents are: |                                                                                                                          |                   |              |             |               |                             |             |                  |  |  |  |  |
|-------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|-------------|---------------|-----------------------------|-------------|------------------|--|--|--|--|
|             | A)                                           | Anionic surf                                                                                                             | ace acti          | ve agents    |             |               |                             |             |                  |  |  |  |  |
|             | B)                                           | Cationic sur                                                                                                             | face act          | ive agents   |             |               |                             |             |                  |  |  |  |  |
|             | C)                                           | Nonionic sur                                                                                                             | rface ac          | tive agents  |             |               |                             |             |                  |  |  |  |  |
|             | D) Amphoteric surface active agents          |                                                                                                                          |                   |              |             |               |                             |             |                  |  |  |  |  |
| 51.         | Mate                                         | h Group I with                                                                                                           | Groun             | II           |             |               |                             |             |                  |  |  |  |  |
| <i>J</i> 1. | Grou                                         | <del>-</del>                                                                                                             | Group             |              |             |               |                             |             |                  |  |  |  |  |
|             | a. Ig                                        |                                                                                                                          |                   | sophils      |             |               |                             |             |                  |  |  |  |  |
|             | b. Ig                                        | =                                                                                                                        |                   | osses placer | nta         |               |                             |             |                  |  |  |  |  |
|             | c. Ig                                        |                                                                                                                          |                   | cretory com  |             |               |                             |             |                  |  |  |  |  |
|             | d. Ig                                        |                                                                                                                          |                   | ntamer       | .P = 11-11. |               |                             |             |                  |  |  |  |  |
|             | A)                                           | a-3, b-1, c-2                                                                                                            | 4.4               | D.           | ) a         | 3 h           | -4 c-2, d-1                 |             |                  |  |  |  |  |
|             | C)                                           | a-3, b-1, c-2,<br>a-2, b-3, c-1,                                                                                         |                   |              | ,           |               | -4 c-2, d-1<br>-1, c-3, d-4 |             |                  |  |  |  |  |
|             | C)                                           | a-2, 0-3, C-1                                                                                                            | , u- <del>4</del> | ָ<br>ע       | ) a         | <b>-</b> 2, 0 | -1, C-3, U-4                |             |                  |  |  |  |  |
| 52.         | For c                                        | lass I MHC, w                                                                                                            |                   |              | _           |               | ts are correc               | et?         |                  |  |  |  |  |
|             | 1.                                           | They are exp                                                                                                             |                   |              |             |               |                             |             |                  |  |  |  |  |
|             | 2.                                           | They are made up of a heavy chain and a light chain  They are essential for viral antigen recognition by cytotoxic cells |                   |              |             |               |                             |             |                  |  |  |  |  |
|             | 3.                                           | •                                                                                                                        |                   | _            | -           | _             |                             |             |                  |  |  |  |  |
|             | 4.                                           | The genes for                                                                                                            | or HLA            | class I mole | cules a     | re lo         | cated on ch                 | romosome    | e 6 and 15       |  |  |  |  |
|             | A)                                           | 1 &3 only                                                                                                                | B)                | 1 & 2 onl    | ly C        | C)            | 2 & 3 onl                   | y D)        | 1, 3 & 4 only    |  |  |  |  |
| 53.         | Intera                                       | action between                                                                                                           | single 1          | paratope wit | h an er     | oitop         | e is called:                |             |                  |  |  |  |  |
|             | A)                                           | Cross-reaction                                                                                                           |                   | B)           | -           | vidi          |                             |             |                  |  |  |  |  |
|             | C)                                           | Affinity                                                                                                                 |                   | D            | ) S         | erolo         | ogical reacti               | ions        |                  |  |  |  |  |
| 54.         | Tyne                                         | I hypersensitiv                                                                                                          | ity is m          | nediated by  |             |               |                             |             |                  |  |  |  |  |
| <i>J</i> 1. | A)                                           | IgG                                                                                                                      | B)                | IgE          | (           | C)            | IgM                         | D)          | IgD              |  |  |  |  |
|             | 11)                                          | 150                                                                                                                      | D)                | igi          |             | <i>-</i> )    | 18111                       | D)          | IgD              |  |  |  |  |
| 55.         |                                              | h Group I with                                                                                                           | Group             |              | r           |               |                             |             |                  |  |  |  |  |
|             | <u>Grou</u>                                  |                                                                                                                          | 1 0               | Group II     |             |               |                             | C .1        | . 1 1            |  |  |  |  |
|             |                                              | ograft                                                                                                                   |                   | aft from one | •           | -             |                             |             |                  |  |  |  |  |
|             |                                              | lograft                                                                                                                  |                   | aft between  |             |               |                             | -           | S                |  |  |  |  |
|             |                                              | enograft                                                                                                                 |                   | aft between  | _           | •             |                             |             |                  |  |  |  |  |
|             | d. At                                        | ıtograft                                                                                                                 | 4. Gr             | aft between  | geneti      | cally         | different in                | idividuals  | within a species |  |  |  |  |
|             | A)                                           | a-4, b-2, c-3                                                                                                            | , d-1             | B            | ) a         | -3, b         | -4, c-2, d-1                |             |                  |  |  |  |  |
|             | C)                                           | a-3, b-2, c-4                                                                                                            | , d-1             | D            | a           | -3, b         | -1, c-4, d-2                |             |                  |  |  |  |  |
| 56.         | Mvas                                         | sthenia gravis i                                                                                                         | s an aut          | oimmune di   | sease o     | ause          | d bv                        |             |                  |  |  |  |  |
|             | A)                                           | Autoantibod                                                                                                              |                   |              |             |               | -                           | c cell cons | tituents         |  |  |  |  |
|             | B)                                           | Autoantibod                                                                                                              | _                 |              |             |               | • •                         |             |                  |  |  |  |  |
|             | C)                                           | Autoantibod                                                                                                              | _                 | -            |             | -             | -                           | J J         |                  |  |  |  |  |
|             | D)                                           | •                                                                                                                        |                   |              |             |               |                             |             |                  |  |  |  |  |
|             | 2)                                           | . I atomitioou                                                                                                           | ios agai          | pariour      | 20110 01    |               | Dustile illue               | 254         |                  |  |  |  |  |
|             |                                              |                                                                                                                          |                   |              |             |               |                             |             |                  |  |  |  |  |

| 57. | Antibiotic used for the selection of hybridoma is: |                                      |          |            |          |           |                  |          |               |  |  |  |  |
|-----|----------------------------------------------------|--------------------------------------|----------|------------|----------|-----------|------------------|----------|---------------|--|--|--|--|
|     | A)                                                 | Neomycin                             |          |            | B)       | Tetra     | acycline         |          |               |  |  |  |  |
|     | C)                                                 | Aminopterin                          |          |            | D)       | Actir     | nomycin D        |          |               |  |  |  |  |
| 58. | A dr                                               | ug used for the ti                   | eatme    | nt of AID  | S:       |           |                  |          |               |  |  |  |  |
|     | A)                                                 | Propanolol                           |          |            | B)       | Azid      | othymidine       |          |               |  |  |  |  |
|     | C)                                                 | Cimetidine                           |          |            | D)       | Hiruo     | din              |          |               |  |  |  |  |
| 59. | An a                                               | lgorithm used in                     | Comp     | uter Aide  | ed Dru   | ıg Disco  | overy is         |          |               |  |  |  |  |
|     | A)                                                 | Monte Carlo                          | simula   | tion       | B)       | Ras I     | Mol              |          |               |  |  |  |  |
|     | C)                                                 | CATH                                 |          |            | D)       | Chim      | ne               |          |               |  |  |  |  |
| 60. | The                                                | first recombinan                     | t antige | en vaccin  | e appı   | oved fo   | or human usage   | is for:  |               |  |  |  |  |
|     | A)                                                 | HIV                                  | B)       | Hepati     | tis B    | C)        | Polio            | D)       | Influenza     |  |  |  |  |
| 61. | The                                                | amber codon is:                      |          |            |          |           |                  |          |               |  |  |  |  |
|     | A)                                                 | UGA                                  | B)       | UAA        |          | C)        | AUG              | D)       | UAG           |  |  |  |  |
| 62. | Whic                                               | ch of the following                  | ng is a  | database   | softw    | are?      |                  |          |               |  |  |  |  |
|     | A)                                                 | MySQL                                | B)       | MS W       | ord      | C)        | Lotus 1-2-3      | D)       | iTunes        |  |  |  |  |
| 63. | The 1                                              | most commonly                        | used a   | lgae as So | CP for   | r humar   | use is:          |          |               |  |  |  |  |
|     | A)                                                 | Chlorella                            | B)       | Scened     | lesmu    | s C)      | Candida          | D)       | Spirulina     |  |  |  |  |
| 64. | Choo                                               | se the statement                     | s whic   | h are true | e?       |           |                  |          |               |  |  |  |  |
|     | 1.                                                 | DDBJ is a nuc                        | eleotid  | e sequen   | ce data  | abase     |                  |          |               |  |  |  |  |
|     | 2.                                                 | PDB is a prot                        | ein seg  | juence da  | tabase   |           |                  |          |               |  |  |  |  |
|     | 3.                                                 | 3. EMBL is a model organism database |          |            |          |           |                  |          |               |  |  |  |  |
|     | 4.                                                 | KEGG is a m                          | ateboli  | te databa  | se       |           |                  |          |               |  |  |  |  |
|     | A)                                                 | 1 & 2 only                           | B)       | 2 & 3 0    | only     | C)        | 1, 2 & 4 only    | ( D)     | 1, 2 & 3 only |  |  |  |  |
| 65. | tBL                                                | ASTn represents                      |          |            |          |           |                  |          |               |  |  |  |  |
|     | A)                                                 | Protein query                        | seque    | nce again  | st tran  | ıslated 1 | nucleotide sequ  | ence da  | tabase        |  |  |  |  |
|     | B)                                                 | Translated nu                        | cleotid  | le query s | sequen   | ice agai  | nst protein sequ | ience d  | atabase       |  |  |  |  |
|     | C)                                                 | Translated nu                        | cleotid  | le query s | sequen   | ice agai  | nst translated n | ucleotic | de database   |  |  |  |  |
|     | D)                                                 | Nucleotide qu                        | ery se   | quence ag  | gainst   | nucleot   | ide sequence d   | atabase  |               |  |  |  |  |
| 66. | The 1                                              | most commonly                        | used n   | nultiple a | lignm    | ent soft  | ware is          |          |               |  |  |  |  |
|     | A)                                                 | FASTA                                | B)       | BLAS       | Γ        | C)        | PAM              | D)       | CLUSTAL       |  |  |  |  |
| 67. | Choo                                               | ose the correct st                   |          |            |          | -         |                  |          |               |  |  |  |  |
|     | 1.                                                 | -                                    |          |            |          | -         | goodness of fit  |          |               |  |  |  |  |
|     | 2.                                                 |                                      |          |            |          |           | pendence of two  |          |               |  |  |  |  |
|     | 3.                                                 |                                      |          |            |          |           | ignificance of o |          |               |  |  |  |  |
|     | 4.                                                 | The chi-squar                        | e test i | s used for | r testii | ng varia  | ance of a norma  | l popul  | ation         |  |  |  |  |
|     | A)                                                 | 1, 2 & 4 only                        |          |            | B)       |           | 3 only           |          |               |  |  |  |  |
|     | C)                                                 | 2 & 3 only                           |          |            | D)       | 3 & 4     | 1 only           |          |               |  |  |  |  |

| 68.                                                                                                                                                                                    |            |                           | of the v   | variables<br>ent |          |                     |               |              |                |          |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------|------------|------------------|----------|---------------------|---------------|--------------|----------------|----------|--|
| 69.                                                                                                                                                                                    |            | the harmonic n            |            |                  | bers 4,  |                     |               | D)           | 2 02           |          |  |
|                                                                                                                                                                                        | A)         | 6.45                      | B)         | 5.45             |          | C)                  | 1.83          | D)           | 3.83           |          |  |
| 70.                                                                                                                                                                                    | The 1      | egislation rega           | rding th   | e patents        | s are go | overned             | by            |              |                |          |  |
|                                                                                                                                                                                        | A)         | Indian Pater              | nt Act, 1  | .980             | B)       | India               | n Patent A    | ct, 1972     |                |          |  |
|                                                                                                                                                                                        | C)         | Indian Paten              | t Act, 2   | 000              | D)       | India               | n Patent Ac   | et, 1970     |                |          |  |
| 71.                                                                                                                                                                                    | The I      | Intellectual Pro          | perty Ri   | ight used        | l for pr | otecting            | g instruction | ns on a com  | puter chip is  | <u>,</u> |  |
|                                                                                                                                                                                        | A)         | Copyright                 | 1 3        | υ                | B) 1     |                     | raphical inc  |              | 1 1            |          |  |
|                                                                                                                                                                                        | C)         | Layout desig              | gn         |                  | D)       | _                   | emarks        |              |                |          |  |
| 72.                                                                                                                                                                                    | A bio      | odiesel producii          | ng plant   |                  |          |                     |               |              |                |          |  |
| , _,                                                                                                                                                                                   | A)         | Casurina equ              |            |                  | B)       | Euph                | orbia lathyı  | ris          |                |          |  |
|                                                                                                                                                                                        | C)         | Melia azadir              |            |                  | D)       | Eucalyptus globulus |               |              |                |          |  |
| 73. The Act to provide for the establishment of an effective system for protection of pl varieties, the rights of farmers and to encourage the development of new varieties of plants: |            |                           |            |                  |          |                     |               |              |                |          |  |
|                                                                                                                                                                                        | A)         | PPVFR Act,                | 2001       |                  | B)       | PPVF                | FR Act, 198   | 34           |                |          |  |
|                                                                                                                                                                                        | C)         | PPVFR Act,                |            |                  | Ď)       |                     | FR Act, 200   |              |                |          |  |
| 74.                                                                                                                                                                                    | The        | Kornberg enzy             | me is:     |                  |          |                     |               |              |                |          |  |
| ,                                                                                                                                                                                      | A)         | DNA polym                 |            |                  | B)       | DNA                 | polymeras     | e I          |                |          |  |
|                                                                                                                                                                                        | C)         | Taq DNA po                |            | se               | Ď)       |                     | olynucleotic  |              |                |          |  |
| 75.                                                                                                                                                                                    | Sma        | I and Xma I are           | e          |                  |          |                     |               |              |                |          |  |
| ,                                                                                                                                                                                      | A)         | Neoschizom                |            |                  | B)       | Isosc               | hizomers      |              |                |          |  |
|                                                                                                                                                                                        | C)         | Isocaudomer               | rs         |                  | Ď)       | Isome               | ers           |              |                |          |  |
| 76.                                                                                                                                                                                    | Whic capac | ch of the follow<br>city? | ring is th | ne prope         | r order  | for the             | vectors in t  | erms of inc  | reasing clon   | ing      |  |
|                                                                                                                                                                                        | A)         | BAC, Cosmi                | id, Phag   | ge, Plasm        | nid, YA  | $^{\prime}$ C       |               |              |                |          |  |
|                                                                                                                                                                                        | B)         | YAC, BAC,                 | Cosmic     | l, Phage         | , Plasm  | id                  |               |              |                |          |  |
|                                                                                                                                                                                        | C)         | Plasmid, Pha              | _          |                  |          |                     |               |              |                |          |  |
|                                                                                                                                                                                        | D)         | Plasmid, Cos              | smid, Pl   | nage, BA         | AC, YA   | C                   |               |              |                |          |  |
| 77.                                                                                                                                                                                    | The I      | PCR method us             | sed for l  | ocating t        | he pred  | cise star           | t and end p   | oints of ger | ne transcripts | s is:    |  |
|                                                                                                                                                                                        | A)         | qRT-PCR                   | B)         | RACI             | Ξ        | C)                  | Nested I      | PCR D)       | RT-PCR         |          |  |
| 78.                                                                                                                                                                                    | Expr       | ession of a euka          | aryotic    | gene in p        | orokary  | otes inv            | volves:       |              |                |          |  |
|                                                                                                                                                                                        | A) 1       | Shine-Dalga               |            |                  |          |                     |               |              |                |          |  |
|                                                                                                                                                                                        | B)         | Absence of i              |            |                  |          |                     |               |              |                |          |  |
|                                                                                                                                                                                        | C)         | Regulatory e              | elements   | upstrea          | m of th  | ne gene             |               |              |                |          |  |
|                                                                                                                                                                                        | D)         | All the above             | e          |                  |          |                     |               |              |                |          |  |

| 79. | Automated DNA sequencing use:  A) Fluorescent labelled ddNTPs B) Fluorescent labelled dNTPs C) Radiolabelled dNTPs D) Radiolabelled ddNTPs |                                                                                                          |           |           |           |          |                  |         |                   |  |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|----------|------------------|---------|-------------------|--|--|--|--|--|
|     |                                                                                                                                            |                                                                                                          |           |           |           |          |                  |         |                   |  |  |  |  |  |
| 80. |                                                                                                                                            | n Fluorescent Pr                                                                                         |           | s isolate |           |          |                  |         |                   |  |  |  |  |  |
|     | A)                                                                                                                                         | Photimus pyr                                                                                             |           |           | B)        |          | rea Victoria     |         |                   |  |  |  |  |  |
|     | C)                                                                                                                                         | Pyrococcus for                                                                                           | uriosus   |           | D)        | I herm   | us aquaticus     |         |                   |  |  |  |  |  |
| 81. | DNA                                                                                                                                        | profiling or DN                                                                                          | NA fing   | erprinti  | ng explo  | oits     |                  |         |                   |  |  |  |  |  |
|     | A)                                                                                                                                         | Expressed Se                                                                                             | -         | _         | B)        |          | ole Number of    |         | n Repeats         |  |  |  |  |  |
|     | C)                                                                                                                                         | Simple Tande                                                                                             | em Rep    | eats      | D)        | Simple   | e Sequence Rep   | peats   |                   |  |  |  |  |  |
| 82. | A hyl                                                                                                                                      | oridization base                                                                                         | d mole    | cular ma  | arker is: |          |                  |         |                   |  |  |  |  |  |
|     | A) <sup>1</sup>                                                                                                                            | RAPD                                                                                                     | B)        | RFLP      |           | C)       | AFLP             | D)      | SSLP              |  |  |  |  |  |
| 83. | Gene                                                                                                                                       | therapy is used                                                                                          | for the   | treatme   | ent of:   |          |                  |         |                   |  |  |  |  |  |
|     | 1.                                                                                                                                         | SCID                                                                                                     |           |           | 2.        | SIDS     |                  |         |                   |  |  |  |  |  |
|     | 3.                                                                                                                                         | Cystic fibrosi                                                                                           | S         |           | 4.        | Sickle   | cell anemia      |         |                   |  |  |  |  |  |
|     | A)                                                                                                                                         | 1 & 2 only                                                                                               | B)        | 1, 3 &    | 4 only    | C)       | 1, 2 & 3 only    | D)      | 2 & 3 only        |  |  |  |  |  |
| 84. | The p                                                                                                                                      | production of ge                                                                                         | ne-targ   | eted kno  | ockout n  | nice inv | olves the follo  | wing st | eps in the order: |  |  |  |  |  |
| 04. | 1.                                                                                                                                         | Isolation and                                                                                            | culturi   | ng of en  | nbryonic  | stem c   | ells             | _       | _                 |  |  |  |  |  |
|     | 2.                                                                                                                                         | . Introduction of a mutant gene into the cultured ES cells and selection of homologous recombinant cells |           |           |           |          |                  |         |                   |  |  |  |  |  |
|     | 3.                                                                                                                                         | 3. Mating of chimeric offspring heterozygous for the disrupted gene                                      |           |           |           |          |                  |         |                   |  |  |  |  |  |
|     | 4.                                                                                                                                         |                                                                                                          |           |           |           |          |                  |         | ouse blastocyst   |  |  |  |  |  |
|     | A)                                                                                                                                         | 1, 2, 3 & 4                                                                                              | B)        |           | & 3       |          | 1, 3, 2 & 4      | D)      | 1, 3, 4 & 2       |  |  |  |  |  |
| 85. | Which of the following are the characteristics of Type II restriction endonucleases?                                                       |                                                                                                          |           |           |           |          |                  |         |                   |  |  |  |  |  |
|     | 1. Bifunctional enzyme with both endonuclease and methylase activity                                                                       |                                                                                                          |           |           |           |          |                  |         |                   |  |  |  |  |  |
|     | 2.                                                                                                                                         | Contains two                                                                                             |           |           | _         |          |                  |         |                   |  |  |  |  |  |
|     | 3.                                                                                                                                         | Restriction re                                                                                           |           |           |           |          |                  |         |                   |  |  |  |  |  |
|     | 4.                                                                                                                                         | Cleavage site                                                                                            | is at or  | near re   | striction | site     |                  |         |                   |  |  |  |  |  |
|     | A)                                                                                                                                         | 1 & 2 only                                                                                               | B)        | 2 & 4     | only      | C)       | 1 & 4 only       | D)      | 3 & 4 only        |  |  |  |  |  |
| 86. |                                                                                                                                            | bility of a singl                                                                                        | e cell to | o divide  | and pro   | duce all | the differentia  | ted cel | ls in an          |  |  |  |  |  |
|     | _                                                                                                                                          | ism is called:                                                                                           |           |           | <b></b>   |          |                  |         |                   |  |  |  |  |  |
|     | A)                                                                                                                                         | Somatic emb                                                                                              |           | esis      | B)        | Totipo   | -                |         |                   |  |  |  |  |  |
|     | C)                                                                                                                                         | De-differentia                                                                                           | ation     |           | D)        | Somac    | clonal variation | l       |                   |  |  |  |  |  |
| 87. |                                                                                                                                            | h of the followi                                                                                         | _         | _         | _         |          |                  |         |                   |  |  |  |  |  |
|     | A)                                                                                                                                         |                                                                                                          |           | -         | _         |          | than the manu    |         | _                 |  |  |  |  |  |
|     | B)                                                                                                                                         | · · · · · · · · · · · · · · · · · · ·                                                                    |           |           |           |          |                  |         |                   |  |  |  |  |  |
|     | D)                                                                                                                                         | All of the abo                                                                                           |           | atation a | ire used  | ior the  | recovery of mi   | crobial | biomass           |  |  |  |  |  |
|     | 1 7 1                                                                                                                                      | A II OT THE ONG                                                                                          | 11/4      |           |           |          |                  |         |                   |  |  |  |  |  |

| 88. | Development of brittle, glassy and water soaked shoot under in vitro conditions is called:                                       |                                                                                |               |             |          |                  |                 |                    |  |  |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------|-------------|----------|------------------|-----------------|--------------------|--|--|--|--|--|
|     | A)                                                                                                                               | Morphologica                                                                   | al variations | B)          | Soma     | clonal variation | ns              |                    |  |  |  |  |  |
|     | C)                                                                                                                               | Vitrification                                                                  |               | D)          | Guttat   | ion              |                 |                    |  |  |  |  |  |
| 89. | Pro                                                                                                                              | duction of virus fi                                                            | ree germplas  | m can be    | accomp   | lished by:       |                 |                    |  |  |  |  |  |
|     | A)                                                                                                                               | Haploid cultu                                                                  | re            | B)          | Embr     | yo culture       |                 |                    |  |  |  |  |  |
|     | C)                                                                                                                               | Meristem cult                                                                  | ture          | D)          | Soma     | tic embryogen    | esis            |                    |  |  |  |  |  |
| 90. | Cho                                                                                                                              | oose the statement                                                             | t/s which are | correct al  | out ant  | her culture      |                 |                    |  |  |  |  |  |
|     | 1.                                                                                                                               | In pathway I ugenerative cel                                                   | -             |             | •        | nmetrically and  | d both t        | he vegetative and  |  |  |  |  |  |
|     | 2.                                                                                                                               | In pathway II generative cel                                                   |               | pollen div  | vides un | equally and en   | nbryos (        | originate from the |  |  |  |  |  |
|     | 3. In pathway III uninucleate pollen divides unequally and embryo originates from the vegetative cell alone.                     |                                                                                |               |             |          |                  |                 |                    |  |  |  |  |  |
|     | 4. In pathway IV uninucleate pollen divides unequally and both the vegetative and generative cells undergo further division      |                                                                                |               |             |          |                  |                 |                    |  |  |  |  |  |
|     | A)                                                                                                                               | 1 & 4 only                                                                     | B) 1, 2       | , 3 &4      | C)       | 2 & 3 only       | D)              | 1, 2 & 4 only      |  |  |  |  |  |
| 91. | The                                                                                                                              | most commonly                                                                  | used fusoger  | n for proto |          |                  | 2.              |                    |  |  |  |  |  |
|     | A)                                                                                                                               | Pectinase                                                                      |               | B)          |          | oH and low Ca    |                 |                    |  |  |  |  |  |
|     | C)                                                                                                                               | Polyethylene                                                                   | glycol        | D)          | Low p    | H and high C     | a <sup>2+</sup> |                    |  |  |  |  |  |
| 92. | Cybrids are:                                                                                                                     |                                                                                |               |             |          |                  |                 |                    |  |  |  |  |  |
|     | A) Plants with nucleus of one species but cytoplasm from both parental species                                                   |                                                                                |               |             |          |                  |                 |                    |  |  |  |  |  |
|     |                                                                                                                                  | B) Plants with cytoplasm of one species but nucleus from both parental species |               |             |          |                  |                 |                    |  |  |  |  |  |
|     | C)                                                                                                                               |                                                                                | •             | toplasm i   | rom bot  | th parental spe  | cies            |                    |  |  |  |  |  |
|     | D)                                                                                                                               | D) None of the above                                                           |               |             |          |                  |                 |                    |  |  |  |  |  |
| 93. | Border sequences need to be incorporated into the design of plasmid vectors for Agrobacterium mediated transformation to ensure: |                                                                                |               |             |          |                  |                 |                    |  |  |  |  |  |
|     |                                                                                                                                  |                                                                                |               |             | ensure:  |                  |                 |                    |  |  |  |  |  |
|     | A)                                                                                                                               |                                                                                |               | СУ          |          |                  |                 |                    |  |  |  |  |  |
|     | B)                                                                                                                               | Oncogene dea                                                                   |               | المنسومات   |          |                  |                 |                    |  |  |  |  |  |
|     | C)<br>D)                                                                                                                         | Efficient repli<br>Integration of                                              |               |             | to the h | ost gene         |                 |                    |  |  |  |  |  |
| 94. | Ma                                                                                                                               | tch Group I with (                                                             | Group II      |             |          |                  |                 |                    |  |  |  |  |  |
|     |                                                                                                                                  | Group I                                                                        | Group I       | Ι           |          |                  |                 |                    |  |  |  |  |  |
|     |                                                                                                                                  | Azadirachtin                                                                   | 1. Digitalis  |             |          |                  |                 |                    |  |  |  |  |  |
|     | b.                                                                                                                               | Digoxin                                                                        | 2. Taxus bu   |             |          |                  |                 |                    |  |  |  |  |  |
|     | c. Taxol 3. Dioscorea deltoidea                                                                                                  |                                                                                |               |             |          |                  |                 |                    |  |  |  |  |  |
|     | d. Diosgenin 4. Azadirachta indica                                                                                               |                                                                                |               |             |          |                  |                 |                    |  |  |  |  |  |
|     | A)                                                                                                                               | a-4, b-3, c-2,                                                                 |               | B)          | -        | -2, c-1, d-3     |                 |                    |  |  |  |  |  |
|     | C)                                                                                                                               | a-3, b-4, c-2,                                                                 | d-1           | D)          | a-4, b-  | -1, c-2, d-3     |                 |                    |  |  |  |  |  |

| 95.  | GMPs refers to:                                                                             |                                                            |                                                                           |            |            |                      |                                    |          |                    |  |  |  |  |
|------|---------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------|------------|------------|----------------------|------------------------------------|----------|--------------------|--|--|--|--|
|      | A)                                                                                          | Global Moni                                                | toring I                                                                  | Practices  |            |                      |                                    |          |                    |  |  |  |  |
|      | B)                                                                                          | Genetically I                                              | Modifie                                                                   | d Plants   |            |                      |                                    |          |                    |  |  |  |  |
|      | C)                                                                                          | Good Manuf                                                 |                                                                           |            | es         |                      |                                    |          |                    |  |  |  |  |
|      | D)                                                                                          | Guidance for                                               |                                                                           |            |            | naceutic             | als                                |          |                    |  |  |  |  |
| 0.6  |                                                                                             |                                                            |                                                                           |            |            |                      |                                    |          |                    |  |  |  |  |
| 96.  |                                                                                             |                                                            |                                                                           | _          | -          |                      | ng an antisense                    | copy of  | f the gene for:    |  |  |  |  |
|      | A)                                                                                          | Polyhydroxy                                                | outyrat                                                                   | e          | B)         |                      | galacturonase                      |          |                    |  |  |  |  |
|      | C)                                                                                          | EPSP                                                       |                                                                           |            | D)         | Lyco                 | pene cyclase                       |          |                    |  |  |  |  |
| 97.  | Whiel                                                                                       | n of the follow                                            | ing is a                                                                  | n anchor   | age-in     | depende              | ent cell line?                     |          |                    |  |  |  |  |
|      | A)                                                                                          | MCF7                                                       |                                                                           |            | B)         | MDA                  | MB 231                             |          |                    |  |  |  |  |
|      | C)                                                                                          | K562                                                       |                                                                           |            | D)         | PC-3                 |                                    |          |                    |  |  |  |  |
| 98.  | Heat i                                                                                      | nactivation of                                             | Foetal 1                                                                  | Bovine S   | Serum      | is done              | at                                 |          |                    |  |  |  |  |
| ,    | A)                                                                                          | 56°C for 30 1                                              |                                                                           | 20,1110    | B)         |                      | for 60 min                         |          |                    |  |  |  |  |
|      | C)                                                                                          | 56°C for 10 i                                              |                                                                           |            | D)         |                      | 37°C for 60 min<br>37°C for 15 min |          |                    |  |  |  |  |
|      | Ο)                                                                                          |                                                            |                                                                           |            | 2)         | 37 0                 |                                    |          |                    |  |  |  |  |
| 99.  | Viabi                                                                                       | lity of cells in                                           | animal (                                                                  | cell culti | ıre can    | an be determined by: |                                    |          |                    |  |  |  |  |
|      | 1.                                                                                          | Bradford's as                                              | ssay                                                                      |            | 2.         | Trypa                | Trypan Blue assay                  |          |                    |  |  |  |  |
|      | 3.                                                                                          | Comet assay                                                |                                                                           |            | 4.         | MTT                  | assay                              |          |                    |  |  |  |  |
|      | A)                                                                                          | 2 only                                                     | B)                                                                        | 1 & 2      | only       | C)                   | 2 & 4 only                         | D)       | 1 & 3 only         |  |  |  |  |
| 100. | In ani                                                                                      | mal cell cultur                                            | e the C                                                                   | Os levels  | s in the   | incubat              | tors are usually                   | mainta   | ined at:           |  |  |  |  |
| 100. | A)                                                                                          | 2 %                                                        | B)                                                                        | 1 %        | , iii tiic | C)                   | 5 %                                | D)       | 10 %               |  |  |  |  |
|      | )                                                                                           | _ / 3                                                      | 2)                                                                        | 1,0        |            | -)                   | <b>5</b> 7 5                       | 2)       | 10 / 0             |  |  |  |  |
| 101. | The p                                                                                       | H indicator in                                             | animal                                                                    |            |            | dium is:             | :                                  |          |                    |  |  |  |  |
|      | A)                                                                                          | HEPES                                                      | B)                                                                        | Pheno      | ol Red     | C)                   | FBS                                | D)       | L-Glutamine        |  |  |  |  |
| 102. | The n                                                                                       | ucleopolyhedr                                              | icleopolyhedrosis viruses (NPV) are widely used as a biopesticide for the |            |            |                      |                                    |          |                    |  |  |  |  |
|      | control of:                                                                                 |                                                            |                                                                           |            |            |                      |                                    |          |                    |  |  |  |  |
|      | A)                                                                                          | Culex larvae                                               | B)                                                                        | Boll v     | vorm       | C)                   | Aphids                             | D)       | Citrus mites       |  |  |  |  |
| 103. | The prominent Indian botanist noted chiefly for his invention of the technique of test-tube |                                                            |                                                                           |            |            |                      |                                    |          |                    |  |  |  |  |
| 105. |                                                                                             | zation of angio                                            |                                                                           |            | . 0111011  | 19 101 111           |                                    |          | inque of test tube |  |  |  |  |
|      | A)                                                                                          | P Maheswari                                                |                                                                           |            | B)         | Gora                 | l Gandhi                           |          |                    |  |  |  |  |
|      | C)                                                                                          | N Guha                                                     |                                                                           |            | D)         | AKI                  |                                    |          |                    |  |  |  |  |
| 104. | The m                                                                                       | najor constitue                                            | nt of nh                                                                  | otochem    | nical sn   | nog is               |                                    |          |                    |  |  |  |  |
| 1011 | A)                                                                                          | Carbon mone                                                |                                                                           | otoonon    | B)         | Ozon                 | e                                  |          |                    |  |  |  |  |
|      | C)                                                                                          | Lead                                                       | 011140                                                                    |            | D)         |                      | r dioxide                          |          |                    |  |  |  |  |
| 105. | An In                                                                                       | ternational acr                                            | eement                                                                    | designe    | d to pr    | otect the            | e stratospherio                    | 070ne 1  | aver is            |  |  |  |  |
| 105. |                                                                                             | An International agreement designed A) Copenhagen Protocol |                                                                           |            |            |                      | o Protocol                         | OZUIIC I | uy 01 10           |  |  |  |  |
|      | C)                                                                                          | Montreal Pro                                               |                                                                           |            | B)<br>D)   | -                    | Summit                             |          |                    |  |  |  |  |
|      | $\sim$ 1                                                                                    | 11101111011111                                             | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                   |            | וע         | 1 4110               | ~ willing                          |          |                    |  |  |  |  |

| 106. | <ol> <li>Choose the correct statements regarding BOD</li> <li>When BOD levels are high there is a decline in dissolved oxygen levels.</li> <li>BOD value exceeding 5mg/L indicates contamination</li> <li>It is an indirect measure of the concentration of non-biodegradable organic matter</li> <li>The amount of oxygen used is proportional to the number and metabolic rate of aerobic microorganisms</li> </ol> |                                                                                                                                |                    |                   |                     |                                                                 |                                            |                        |               |  |  |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|---------------------|-----------------------------------------------------------------|--------------------------------------------|------------------------|---------------|--|--|--|
|      | A)                                                                                                                                                                                                                                                                                                                                                                                                                    | 1, 2 & 4 only                                                                                                                  | B)                 | 1, 2 &            | 3 only              | C)                                                              | 1 & 2 only                                 | D)                     | 2, 3 & 4 only |  |  |  |
| 107. | Pink d<br>A)<br>C)                                                                                                                                                                                                                                                                                                                                                                                                    | Mercury B)                                                                                                                     |                    |                   | numan t<br>B)<br>D) | being caused by intaking the heavy metal<br>Cadmium<br>Chromium |                                            |                        |               |  |  |  |
| 108. | Biofili<br>A)<br>C)                                                                                                                                                                                                                                                                                                                                                                                                   | ns are involved in: Trickling filter digesters Airlift fermenters                                                              |                    |                   | B)<br>D)            | Activated sludge process Lagooning                              |                                            |                        |               |  |  |  |
| 109. |                                                                                                                                                                                                                                                                                                                                                                                                                       | ation of selecte<br>minant in an pol<br>Biostimulation<br>Bioaugmentat                                                         | lluted ar<br>n     |                   |                     | ·                                                               | arging                                     | eed up the rate of     |               |  |  |  |
| 110. | Ripeni<br>A)<br>C)                                                                                                                                                                                                                                                                                                                                                                                                    | ing of cheddar of Aspergillus ni<br>Lactobacillus                                                                              | ger                | s done            | using:<br>B)<br>D)  | B) Mucor miehei                                                 |                                            |                        |               |  |  |  |
| 111. | The ch<br>A)<br>C)                                                                                                                                                                                                                                                                                                                                                                                                    | chief contaminant in canning industry is:  Lactobacillus B) Clostridium botulinum  Bacillus subtilis D) Trichoderma polysporum |                    |                   |                     |                                                                 |                                            |                        |               |  |  |  |
| 112. | order 1                                                                                                                                                                                                                                                                                                                                                                                                               | nzyme which is<br>to enhance their<br>Glucose isom<br>Glucose oxida                                                            | r storabi<br>erase | lity:             |                     | Polyg                                                           | ose or oxygen f<br>alacturonase<br>amylase | en from food stuffs in |               |  |  |  |
| 113. | Choos<br>A)<br>B)<br>C)<br>D)                                                                                                                                                                                                                                                                                                                                                                                         | There are fewer base pairs per helical turn  It has fewer helical turns than the linear or relaxed molecule                    |                    |                   |                     |                                                                 |                                            |                        |               |  |  |  |
| 114. | Ethidi<br>A)<br>C)                                                                                                                                                                                                                                                                                                                                                                                                    | um bromide is<br>Chelating age<br>Reducing age                                                                                 | nt                 |                   | B)<br>D)            |                                                                 | alating agent<br>sing agent                |                        |               |  |  |  |
| 115. | Which A)                                                                                                                                                                                                                                                                                                                                                                                                              | of the followin<br>Calnexin                                                                                                    | ng is NO<br>B)     | OT a cha<br>Hsp70 | -                   | e?<br>C)                                                        | Cadherin                                   | D)                     | Calreticulin  |  |  |  |

| 116. | Absorption of UV light at 280 nm by purified proteins is due to the aminoacids:                                |                                                                                                                      |                |                 |         |                         |                                                                                                     |                |                |  |  |
|------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------|-----------------|---------|-------------------------|-----------------------------------------------------------------------------------------------------|----------------|----------------|--|--|
|      | A)                                                                                                             | Methionine and Valine                                                                                                |                |                 | B)      | Tryptophan and Tyrosine |                                                                                                     |                |                |  |  |
|      | C)                                                                                                             | Histidine and Cysteine                                                                                               |                |                 | Ď)      | Glycine and Lysine      |                                                                                                     |                |                |  |  |
| 117. | Sugars that differ only by the stereochemistry at a single carbon (other than the anomeric carbon) are called: |                                                                                                                      |                |                 |         |                         |                                                                                                     |                |                |  |  |
|      | A)                                                                                                             | Enantiomers                                                                                                          | B)             | Anome           | rs      | C)                      | Isomers                                                                                             | D)             | Epimers        |  |  |
| 118. |                                                                                                                | st cancer cells exhibit increased glycoly heir energy supply. This phenomenon is Pasteur effect B) Warburg effect D) |                |                 |         |                         | sis for generation of ATP as a main source known as:  Emerson enhancement effect  None of the above |                |                |  |  |
| 119. | The largest secondary lymphoid organ is:                                                                       |                                                                                                                      |                |                 |         |                         |                                                                                                     |                |                |  |  |
|      | A)                                                                                                             | Spleen                                                                                                               | B)             | Thymu           | S       | C)                      | MALT                                                                                                | D)             | Lymph nodes    |  |  |
| 120. | The m                                                                                                          | ajor immunogl<br>IgG                                                                                                 | obulin :<br>B) | found in<br>IgM | the col | ostrums<br>C)           | s of milk in n<br>IgD                                                                               | ursing m<br>D) | others:<br>IgA |  |  |
|      |                                                                                                                |                                                                                                                      |                |                 |         |                         |                                                                                                     |                |                |  |  |